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Abstract:
We provide a novel approach of estimating a regime-switching nonlinear and non-Gaussian state-space model
based on a particle learning scheme. In particular, we extend the particle learning method in Liu, J., and M.
West. 2001. “Combined Parameter and State Estimation in Simulation-Based Filtering.” In Sequential Monte Carlo
Methods in Practice, 197–223. Springer. by constructing a new proposal distribution for the latent regime index
variable that incorporates all available information contained in the current and past observations. The Monte
Carlo simulation result implies that our approach categorically outperforms a popular existing algorithm. For
empirical illustration, the proposed algorithm is used to analyze the underlying dynamics of US excess stock
return.
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1 Introduction

A linear state-space model with Markov switching is widely used in the application where dramatic changes in
model parameters are prevalent. Kim (1994), for instance, estimates the model with a Kalman filter-based tech-
nique. The traditional linear model is no longer adequate, however, because of the presence of non-linearity in
many modern day applications. Another feature of current time-series observations is a surge in real-time data,
compounding at a rapid rate. A more refined model, consequently, requires two areas of improvement: first,
consideration of non-linearity and non-Gaussian shocks in the state-space model under a regime-switching
environment; and second, the inclusion of sequential parameter learning and state filtering methodology to
accommodate the high rate of real-time data update. We propose a sophisticated sequential parameter learn-
ing algorithm that can be used in a generalized regime-switching environment. Then we test the estimation
accuracy of our algorithm against a popular alternative method.

The foundations of our proposed approach are novel works of Carvalho and Lopes (2007) and Liu and West
(2001). In their seminal paper, Liu and West (2001) introduce a sequential parameter learning method by com-
bining the auxiliary particle filter (APF) of Pitt and Shephard (1999)1 with a kernel smoothing approach that ap-
proximates the posterior distribution of model parameters. Extending the method of Liu and West (2001), Car-
valho and Lopes (2007) develop a widely applicable and easily implementable particle learning algorithm to
estimate a regime-switching state-space model. Our main contribution is improving the estimation perfor-
mance of the algorithm in Carvalho and Lopes (2007), which is a culmination of several seminal works in the
Sequential Monte Carlo (SMC) literature.2

Under the framework of Carvalho and Lopes (2007), we improve the estimation accuracy and the computa-
tional efficiency by carefully designing a particle re-sampling procedure and a candidate generating distribu-
tion for a regime index variable (i.e. st). In their algorithm, the particle re-sampling process and the candidate
generating distribution are mainly determined by the regime transition probability. Specifically, a particular
regime state that has the highest regime transition probability is selected at time t given the regime state at time
t − 1. Based on the chosen regime state at time t, the predictive density of the current data (i.e. yt) is calculated.
The predictive density, which is largely determined by the transition probability, is the main factor in the parti-
cle re-sampling step. Unfortunately, the existing approach cannot efficiently identify regime-switching because
any regime transition probability higher than 0.5, for instance, would indicate that there is no change in regimes
between the two time periods in the re-sampling step.3 Moreover, the existing approach can be inefficient since
the regime transition probability is the only factor that determines particles of the regime index variable at time
t.
Jaeho Kim is the corresponding author.
©2019 Walter de Gruyter GmbH, Berlin/Boston.
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To mitigate the strong dependence on the regime transition probability, we combine the re-sampling step
and the particle drawing step of the regime index variable, while utilizing the information set available up to the
current period. By using both the regime transition probability and the current data in the combined step, the
estimation performance is no longer sensitive to the regime transition probability. Given a reasonable number
of particles, the SMC simulation results indicate that the estimation accuracy in Carvalho and Lopes (2007) is
greatly compromised when regimes are frequently changing, whereas our estimation strategy performs well
regardless of the regime persistence.

For an empirical illustration, we apply the proposed algorithm to investigate the dynamics of US excess
stock market returns. We extend the model of Brandt and Kang (2004) to investigate whether dramatic regime
changes exist in the conditional variance and mean process. Numerous studies document regime changes in
the conditional variance process of the S&P 500 data (e.g. Beltratti and Morana, 2006; So, Lam and Li, 1998) and
European stock markets (e.g. Morana and Beltratti, 2002). On the other hand, only a few studies allow for the
regime-dependent conditional mean for the US stock returns (e.g. Marcucci 2005) and foreign exchange rates
(e.g. Bollen, Gray and Whaley, 2000).

Based on marginal likelihood values, we find that models with regime changes in volatility can best explain
the underlying dynamics of the process. We do not, however, find any evidence that regime changes exist in the
conditional mean. Moreover, we highlight that the leverage effect itself is an integral element of the stock return
analysis even though the model with regime changes in both volatility and the leverage effect is not selected as
the best model.

2 Sequential estimation of markov switching state-space models

A nonlinear and non-Gaussian state-space model with regime-switching for a N-dimensional time series, yt,
and state vector, xt, generally adopts the following specification:

𝑦𝑡 = ℎ(𝑥𝑡, 𝑠𝑡, 𝜖𝑡) (1)

𝑥𝑡 = 𝑔(𝑥𝑡−1, 𝑠𝑡, 𝜂𝑡), (2)

where the error terms ϵt and ηt are i.i.d. random variables and their means are assumed to be zeros. The mea-
surement equation, h(⋅), relates the state vector xt to the observed data, while the transition equation, g(⋅), shows
the dynamics of xt. Both the measurement and transition equations are determined by the parameter set, 𝛽𝑠𝑡

,
whose values depend on the regime state, 𝑠𝑡 ∈ {0, 1, … , 𝐾 −1}. The dynamic system changes between K regimes
over time, while the latent variable that determines the current regime, st, follows a first-order Markovian pro-
cess as given below:

𝜋𝑘,𝑗 = 𝑝(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑘), (3)

where ∏𝐾−1
𝑗=0 𝜋𝑘,𝑗 = 1. We can also allow for structural breaks in the nonlinear state-space model by imposing

restrictions on the transition probabilities as in Chib (1998). Let π be the set of transition probabilities. The
main goal of our proposed estimation strategy is to sequentially estimate the unknown model parameters,
𝜃 = [𝛽′

0, 𝛽′
1, … , 𝛽′

𝐾−1, 𝜋]′, and the latent states, [st, xt], by incorporating new observations at each time period.4
Liu and West (2001) combine the auxiliary particle filter with kernel smoothing methods, which is the foun-

dation of our sequential parameter learning approach. We summarize the Liu-West (LW) filter in Algorithm 1
with the inclusion of the distribution for st.5

Algorithm 1 Liu-West (LW) Filter for Markov Switching state-space Models

i. Generate {𝑠(𝑖)
0 , 𝑥(𝑖)

0 , 𝜃(𝑖)
0 } with the importance weight, 𝜔̂(𝑖)

0 = 1
𝑁 for i = 1, 2, … , N.

ii. Compute the re-sampling weight 𝜔̂(𝑖)
𝑡−1∣𝑡 for i = 1, 2, … , N.

iii. Re-sample N particles { ̂𝑠(𝑖)
𝑡−1, ̂𝑥(𝑖)

𝑡−1, ̂𝜃(𝑖)
𝑡−1}𝑁

𝑖=1 from {𝑠(𝑖)
𝑡−1, 𝑥

(𝑖)
𝑡−1, 𝜃

(𝑖)
𝑡−1}𝑁

𝑖=1 and draw {𝑠(𝑖)
𝑡 , 𝑥(𝑖)

𝑡 , 𝜃(𝑖)
𝑡 } conditional on

{ ̂𝑠(𝑖)
𝑡−1, ̂𝑥(𝑖)

𝑡−1, ̂𝜃(𝑖)
𝑡−1} for i = 1, 2, … , N.
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iv. Compute the normalized importance weight, 𝜔̂(𝑖)
𝑡 , for the particle set {𝑠(𝑖)

𝑡 , 𝑥(𝑖)
𝑡 , 𝜃(𝑖)

𝑡 } for i = 1, 2, … , N. Iterate
steps (ii), (iii), and (iv) at t = 1, 2, … , T.

In Algorithm 1, N represents the number particles of the latent variables. At step (i) of Algorithm 1, the particle
set {𝑠(𝑖)

0 , 𝑥(𝑖)
0 , 𝜃(𝑖)

0 } is orderly drawn from 𝑝(𝜃(𝑖)
0 ), 𝑝(𝑠(𝑖)

0 ∣ 𝜃(𝑖)
0 ), and 𝑝(𝑥(𝑖)

0 ∣ 𝑠(𝑖)
0 , 𝜃(𝑖)

0 ). Note that 𝑝(𝑠(𝑖)
0 ∣ 𝜃(𝑖)

0 ) and
𝑝(𝑥(𝑖)

0 ∣ 𝑠(𝑖)
0 , 𝜃(𝑖)

0 ) are the unconditional distribution of 𝑠(𝑖)
0 and 𝑥(𝑖)

0 . To estimate the unknown parameter set
𝜃 = [𝛽′

0, 𝛽′
1, … , 𝛽′

𝐾−1, 𝜋]′ at time t − 1, the LW filter incorporates the following mixture of multivariate normal
distributions:

𝑝(𝜃|𝑦1∶𝑡−1) ≈
𝑁

∑
𝑖=1

𝜔̂(𝑖)
𝑡−1𝑓 (𝜃; 𝑚(𝑖)

𝑡−1, ℎ2𝑉𝑡−1), (4)

where 𝑓 (𝜃; 𝑚(𝑖)
𝑡−1, ℎ2𝑉𝑡−1) is a normal distribution with the mean, 𝑚(𝑖)

𝑡−1, and the variance, ℎ2𝑉𝑡−1. Note that 𝑚(𝑖)
𝑡−1 =

𝛼𝜃(𝑖)
𝑡−1 + (1 − 𝛼) ̄𝜃𝑡−1, where ̄𝜃𝑡−1 = ∑𝑁

𝑖=1 𝜔̂(𝑖)
𝑡−1𝜃

(𝑖)
𝑡−1. Also ℎ2𝑉𝑡−1 = ℎ2 ∑𝑁

𝑖=1 𝜔̂(𝑖)
𝑡−1(𝜃(𝑖)

𝑡−1 − ̄𝜃𝑡−1)(𝜃(𝑖)
𝑡−1 − ̄𝜃𝑡−1)′, where

ℎ2 = (1 − 𝛼2). The tuning parameter, α, appears in the mean through 𝑚(𝑖)
𝑡−1 (i.e. a shrinkage factor) and in the

variance through h2 (i.e. a smoothing factor).
Carvalho and Lopes (2007) extend the LW filter by including the regime-state, st. An important feature

of their algorithm is that the estimation of st is heavily dependent on the previous state through the prior
transition density. We explain Carvalho and Lopes (2007)’s approach in Algorithm 2. Notice that the derivation
in Algorithm 2 starts from step (ii.1) because the first step is the same as step (i) of the LW filter derivation in
Algorithm 1.

Algorithm 2 Carvalho and Lopes (2007)

ii.1 Compute posterior mean and variance statistics, 𝑚(𝑖)
𝑡−1 and ℎ2𝑉𝑡−1.

ii.2 Generate ̃𝑠(𝑖)
𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘∈{0,…,𝐾−1}𝑝(𝑠𝑡 = 𝑘 ∣ 𝑠(𝑖)

𝑡−1; 𝑚
(𝑖)
𝑡−1) for i = 1, 2, … , N.

ii.3 Compute ̃𝑥(𝑖)
𝑡 = 𝑔(𝑥(𝑖)

𝑡−1, ̃𝑠(𝑖)
𝑡 , 𝜂𝑡 = 0; 𝑚(𝑖)

𝑡−1) for i = 1, 2, … , N.

ii.4 Compute the re-sampling importance weight, 𝜔̂(𝑖)
𝑡−1|𝑡 = 𝜔(𝑖)

𝑡−1|𝑡

∑𝑁
𝑗=1 𝜔(𝑗)

𝑡−1|𝑡
for i = 1, 2, … , N, where 𝜔𝑡−1|𝑡

(𝑖) ∝

𝑝(𝑦𝑡| ̃𝑥(𝑖)
𝑡 , ̃𝑠(𝑖)

𝑡 ; 𝑚(𝑖)
𝑡−1)𝜔̂(𝑖)

𝑡−1, and 𝑝(𝑦𝑡| ̃𝑥(𝑖)
𝑡 , ̃𝑠(𝑖)

𝑡 ; 𝑚(𝑖)
𝑡−1) is the conditional density of yt given ̃𝑥(𝑖)

𝑡 , ̃𝑠(𝑖)
𝑡 , and 𝑚(𝑖)

𝑡−1.

iii.1 Re-sample the particle set, { ̂𝑠(𝑖)
𝑡 , ̂𝑥(𝑖)

𝑡 , ̂𝑠(𝑖)
𝑡−1, ̂𝑥(𝑖)

𝑡−1, ̂𝜃(𝑖)
𝑡−1, 𝑚̂

(𝑖)
𝑡−1}𝑁

𝑖=1 from { ̃𝑠(𝑖)
𝑡 , ̃𝑥(𝑖)

𝑡 , 𝑠(𝑖)
𝑡−1, 𝑥

(𝑖)
𝑡−1, 𝜃

(𝑖)
𝑡−1, 𝑚

(𝑖)
𝑡−1}𝑁

𝑖=1 using
{𝜔̂(𝑖)

𝑡−1|𝑡}𝑁
𝑖=1. Define ̃𝑠(𝑖)

𝑡 = ̂𝑠(𝑖)
𝑡 ; ̃𝑥(𝑖)

𝑡 = ̂𝑥(𝑖)
𝑡 ; 𝑠(𝑖)

𝑡−1 = ̂𝑠(𝑖)
𝑡−1; 𝑥(𝑖)

𝑡−1 = ̂𝑥(𝑖)
𝑡−1; 𝜃(𝑖)

𝑡−1 = ̂𝜃(𝑖)
𝑡−1; and 𝑚(𝑖)

𝑡−1 = 𝑚̂(𝑖)
𝑡−1 for i = 1,

2, … , N.

iii.2 Generate 𝜃(𝑖)
𝑡 from 𝑁(𝑚(𝑖)

𝑡−1, ℎ2𝑉𝑡−1) for i = 1, 2, … , N.

iii.3 Generate 𝑠(𝑖)
𝑡 from 𝑝(𝑠𝑡 ∣ 𝑠(𝑖)

𝑡−1; 𝜃
(𝑖)
𝑡 ) for i = 1, 2, … , N.

iii.4 Generate 𝑥(𝑖)
𝑡 from 𝑝(𝑥𝑡 ∣ 𝑠(𝑖)

𝑡−1, 𝑠
(𝑖)
𝑡 , 𝑥(𝑖)

𝑡−1; 𝜃
(𝑖)
𝑡 ) for i = 1, 2, … , N.

iv Compute the importance weight 𝜔̂(𝑖)
𝑡 = 𝜔(𝑖)

𝑡

∑𝑁
𝑗=1 𝜔(𝑗)

𝑡
,   where 𝜔(𝑖)

𝑡 ∝ 𝑝(𝑦𝑡 ∣𝑥(𝑖)
𝑡 ,𝑠(𝑖)

𝑡 ;𝜃(𝑖)
𝑡 )

𝑝(𝑦𝑡 ∣ ̃𝑥(𝑖)
𝑡 , ̃𝑠(𝑖)

𝑡 ;𝑚(𝑖)
𝑡−1)

.

It is important to note that ̃𝑠(𝑖)
𝑡 , which is solely determined by the regime transition probability, 𝑝(𝑠𝑡 ∣ 𝑠(𝑖)

𝑡−1), is
used to generate ̃𝑥(𝑖)

𝑡 and to compute the re-sampling weight 𝜔̂(𝑖)
𝑡−1|𝑡. Moreover, the new particle, 𝑠(𝑖)

𝑡 , is gener-
ated from the same transition probability. Because of the heavy dependency of Algorithm 2 on the transition
probability, we conjecture that its performance is substantially influenced by the degree of persistence in each
regime. A small number of particles, in particular, would exacerbate the problem.

To mitigate the problem, we relax the restriction of relying on the regime transition probability as a main
factor that determines the re-sampling weights and st in the proposal distribution. Instead, we utilize all of the
available information set, including the current observation yt in the merged process that combines the step for
re-sampling particles at time t − 1 with the step of generating new st particles. Algorithm 3 summarizes of our
approach.6 Notice that the derivation in Algorithm 3 starts from step (ii.1) because the first step is the same as
step (i) of the LW filter derivation in Algorithm 1.

Algorithm 3 Proposed Algorithm

3
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ii.1 Compute posterior mean and variance statistics, 𝑚(𝑖)
𝑡−1 and ℎ2𝑉𝑡−1.

ii.2 Compute ̃𝑥(𝑖)
𝑡∣𝑘 = 𝑔(𝑥(𝑖)

𝑡−1, 𝑠𝑡 = 𝑘, 𝜂𝑡 = 0; 𝑚(𝑖)
𝑡−1) for 𝑘 = 0, 1, … , 𝐾 − 1 and i = 1, 2, … , N.

ii.3 Compute the importance weight 𝜔̂(𝑖)
𝑡−1|𝑡,𝑘 = 𝜔(𝑖)

𝑡−1|𝑡,𝑘

∑𝐾−1
𝑘=0 ∑𝑁

𝑖=1 𝜔(𝑖)
𝑡−1|𝑡,𝑘

for 𝑘 = 0, 1, … , 𝐾 − 1 and i = 1, 2, … , N, where

𝜔(𝑖)
𝑡−1|𝑡,𝑘 ∝ 𝑝(𝑦𝑡 ∣ ̃𝑥(𝑖)

𝑡∣𝑘 , 𝑠𝑡 = 𝑘; 𝑚(𝑖)
𝑡−1)𝑝(𝑠𝑡 = 𝑘|𝑠(𝑖)

𝑡−1; 𝑚
(𝑖)
𝑡−1)𝜔̂(𝑖)

𝑡−1.

iii.1 Draw {𝑠(𝑖)
𝑡 }𝑁

𝑖=1 and re-sample the particle set, { ̂𝑥(𝑖)
𝑡|𝑘 , ̂𝑠(𝑖)

𝑡−1, ̂𝑥(𝑖)
𝑡−1, ̂𝜃(𝑖)

𝑡−1, 𝑚̂
(𝑖)
𝑡−1}𝑁

𝑖=1 simultaneously using 𝜔̂(𝑖)
𝑡−1|𝑡,𝑘.

The re-sampling is preformed on { ̃𝑥(𝑖)
𝑡|𝑘 , 𝑠(𝑖)

𝑡−1, 𝑥
(𝑖)
𝑡−1, 𝜃

(𝑖)
𝑡−1, 𝑚

(𝑖)
𝑡−1}𝑁

𝑖=1. Define ̃𝑥(𝑖)
𝑡|𝑘 = ̂𝑥(𝑖)

𝑡|𝑘 ; 𝑠(𝑖)
𝑡−1 = ̂𝑠(𝑖)

𝑡−1; 𝑥(𝑖)
𝑡−1 = ̂𝑥(𝑖)

𝑡−1;
and 𝜃(𝑖)

𝑡−1 = ̂𝜃(𝑖)
𝑡−1.

iii.2 Generate 𝜃(𝑖)
𝑡 from 𝑁(𝑚(𝑖)

𝑡−1, ℎ2𝑉𝑡−1) for i = 1, 2, … , N.

iii.3 Generate 𝑥(𝑖)
𝑡 from 𝑝(𝑥𝑡 ∣ 𝑠(𝑖)

𝑡 , 𝑥(𝑖)
𝑡−1; 𝜃

(𝑖)
𝑡 ) for i = 1, 2, … , N.

iv Compute the importance weight 𝜔̂(𝑖)
𝑡 = 𝜔(𝑖)

𝑡

∑𝑁
𝑗=1 𝑤(𝑗)

𝑡
,   where 𝜔(𝑖)

𝑡 ∝ 𝑝(𝑦𝑡 ∣𝑥(𝑖)
𝑡 ,𝑠(𝑖)

𝑡 ;𝜃(𝑖)
𝑡 )𝑝(𝑠(𝑖)

𝑡 |𝑠(𝑖)
𝑡−1;𝜃

(𝑖)
𝑡 )

𝑝(𝑦𝑡 ∣ ̃𝑥(𝑖)
𝑡∣𝑠(𝑖)

𝑡
,𝑠(𝑖)

𝑡 ;𝑚(𝑖)
𝑡−1)𝑝(𝑠(𝑖)

𝑡 |𝑠(𝑖)
𝑡−1;𝑚

(𝑖)
𝑡−1)

.

The main difference between the existing particle learning algorithm in Carvalho and Lopes (2007) (i.e. Algo-
rithm 2) and our proposed approach in Algorithm 3 lies on steps (ii), (iii), and (iv). Specifically, at step (iii.1) of
Algorithm 3, we combine the re-sampling step for the existing particles at time t − 1 and the sampling step for
st. This step is the key to understanding how the proposed algorithm can overcome the aforementioned prob-
lem of the existing algorithm. First, our approach does not require the generation of deterministic ̃𝑠(𝑖)

𝑡 , which
critically depends on the transition probability. Second, our approach employs more information contained in
the current observation yt in generating st compared to Algorithm 2.

3 Simulation study

We consider a two-state (i.e. K = 2) Markov Switching Stochastic Volatility (MSSV) model proposed in So, Lam,
and Li (1998) to evaluate the performance of the two described online estimation algorithms:

𝑦𝑡 = 𝛽 + exp(
𝑥𝑡
2

)𝜖𝑡, 𝜖𝑡 ∼ 𝑁(0, 1) (5)

𝑥𝑡 = 𝛼𝑠𝑡
+ 𝜙(𝑥𝑡−1 − 𝛼𝑠𝑡−1

) + 𝜂𝑡, 𝜂𝑡 ∼ 𝑁(0, 𝜎2), (6)

where 𝛼𝑠𝑡
= 𝛼0 + 𝛼𝑑𝑠𝑡 and 𝑠𝑡 ∈ {0, 1} for 𝑡 = {1, 2, … , 𝑇}. Without loss of generality, regime 0 or st = 0 refers to a

low-volatility state, whereas regime 1 or st = 1 refers to a high-volatility regime. Following the data generating
process in equations (5) and (6), we use the parameter values of {α0 = 1, αd = 3, ϕ = 0.5, σ2 = 0.5} with T = 1000
over a set of 100 simulation studies. We explore two different sets of transition probabilities. Case 1 considers a
volatility process that experiences a relatively frequent regime switch. The corresponding transition probability
values are π00 = 0.9 and π11 = 0.85 with the expected regime duration of 10 and 7 for regimes 0 and 1, respec-
tively.7 On the other hand, Case 2 considers a volatility process that has a more persistent state and uses the
probability values of π00 = 0.99 and π11 = 0.9. The corresponding expected regime duration is 100 for regime 0
and 10 for regime 1. For both cases, we generate the entire sequence of true values of st based on the computed
expected regime duration.

To compare the estimation accuracy of the simulation results, we define the Mean Squared Error (MSE) for
volatility as 𝑀𝑆𝐸(𝑗)

𝑉 = 1
𝑇 ∑𝑇

𝑡=1(𝑉𝑡 − 𝑉̂(𝑗)
𝑡 )2, which represents the difference between the real volatility process

(i.e. 𝑉𝑡 = 𝑒𝑥𝑝(𝑥𝑡)) and the filtered process (i.e. 𝑉̂𝑡 = 𝑒𝑥𝑝( ̂𝑥𝑡)) in the j-th simulation.8 We compute the average
volatility MSE (i.e. ̄𝑀𝑆𝐸𝑉 = 1

100 ∑100
𝑗=1 𝑀𝑆𝐸(𝑗)

𝑉 ) to summarize all simulation results.
Moreover, to compare how well each algorithm is able to correctly capture changes in regimes and suc-

cessfully recognize the current state, we define the Quadratic Probability Score (QPS) for the j-th simulation
as 𝑄𝑃𝑆(𝑗) = 1

𝑇 ∑𝑇
𝑡=1(𝑠𝑡 − 𝑃̂𝑟(𝑠𝑡 = 1)(𝑗))2 × 100, where 𝑃̂𝑟(𝑠𝑡 = 1) is the filtered probability of the high volatility

regime (i.e. estimated state) and st is the true value. We can summarize the QPS by averaging over the repeated
simulation number of 100 (i.e. ̄𝑄𝑃𝑆 = 1

100 ∑100
𝑗=1 𝑄𝑃𝑆(𝑗)). The score ranges between 0 and 100. QPS is equal to 0
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if the online estimation algorithm is able to perfectly capture and recognize the regime changes, while 1 being
the other side of the extreme.

To compare the performance of the parameter estimation, we define the MSE for model parameters9 as
𝑀𝑆𝐸(𝑗)

𝑃 = 1
𝑇 ∑𝑇

𝑡=1(𝑝 − ̂𝑝(𝑗)
𝑡 )2 where p is the true parameter value and ̂𝑝𝑡 is the estimated parameter path. Similar

to the volatility MSE and QPS, the average MSE for each parameter can be written as ̄𝑀𝑆𝐸𝑃 = 1
100 ∑100

𝑖=𝑗 𝑀𝑆𝐸(𝑗)
𝑃 .

We compare the performance of each algorithm under different regime frameworks based on the average
values of MSEV, QPS, and MSEP in Table 1. For a direct comparison, each filter utilizes the same number of
particles (N = 5000). We use non-informative priors for the model parameters in the simulation.10 Columns (1)
and (4) are from the algorithm of Carvalho and Lopes (2007) and columns (2) and (5) are from our proposed
algorithm. Column (3) and (6) represent the percent change from the algorithm used in Carvalho and Lopes
(2007) to our algorithm for Case 1 and Case 2, respectively.

Table 1: Averages of MSEV, QPS, and MSEP for the 2-state MSSV Model.

Case 1: π00 = 0.9, π11 = 0.85 Case 2: π00 = 0.99, π11 = 0.9

(1) (2) (3) (4) (5) (6)
Carvalho and Lopes

(2007)
Proposed %Δ Carvalho and Lopes

(2007)
Proposed %Δ

̄𝑀𝑆𝐸𝑉 3811 3787 −0.63% 640.67 644.72 0.63%
̄𝑄𝑃𝑆 34.773 16.081 −53.75% 6.254 6.075 −2.86%
̄𝑀𝑆𝐸𝑃 ∶ 𝛼0 1.535 0.974 −36.55% 0.0641 0.0636 −0.78%
̄𝑀𝑆𝐸𝑃 ∶ 𝛼𝑑 0.540 0.421 −22.04% 0.489 0.440 −10.02%
̄𝑀𝑆𝐸𝑃 ∶ 𝜙0 0.0231 0.0161 −30.30% 0.0238 0.0242 1.68%
̄𝑀𝑆𝐸𝑃 ∶ 𝜎2 0.990 0.205 −79.29% 0.0369 0.0206 −44.17%
̄𝑀𝑆𝐸𝑃 ∶ 𝜋00 0.00203 0.00108 −46.80% 0.00062 0.00059 −4.84%
̄𝑀𝑆𝐸𝑃 ∶ 𝜋11 0.0124 0.0026 −79.03% 0.00110 0.00109 −0.91%

̄𝑀𝑆𝐸𝑉 refers to the average mean squared error for volatility. ̄𝑄𝑃𝑆 refers to the average quadratic probability score. The QPS index
ranges between 0 and 100, with 0 being the case of correct assignment of the state variable for all time periods and 100 being the opposite
case. ̄𝑀𝑆𝐸𝑃 refers to the MSE of each parameter. The results are based on the 2-state MSSV model with α0 = 1, αd = 3, ϕ = 0.5, σ2 = 0.5
using 5000 particles, averaged over 100 simulations. %Δ refers to the percent changes from column (1) to column (2) and from column (4)
to column (5), where the negative values indicate a percent decrease, whereas positive values indicate a percent increase.

The overall result indicates that when there is a high turnover rate in regime-switching (i.e. Case 1), the
proposed algorithm clearly outperforms the existing algorithm in estimation accuracy. Particularly, the aver-
age MSEV value decreases for Case 1. This implies that the proposed approach can better estimate the volatility
process given the same number of particles. Furthermore, the average QPS value of the proposed filter is nearly
twice as small as that of the existing algorithm (i.e. a decrease of 53.75%). This reduction is significantly greater
than the reduction in Case 2 (i.e. −2.86%). Because a lower value of the average QPS equates to less erroneous
state estimations, the proposed algorithm can better determine the position of the current state with the reason-
able number of particles. When regime-switching is stagnant (i.e. Case 2), the average MSEV and the average
QPS values of the proposed approach are not very different from those of the existing approach.11

The parameter estimation accuracy of the proposed approach is also significantly better than the existing
algorithm given N = 5000 in Case 1. For instance, regime-dependent volatility means (i.e. α0 and αd) are better
estimated with the proposed approach with the average MSE value of 0.974 and 0.421 compared with values of
1.535 and 0.540 of the existing filter, respectively. Moreover, the existing filter produces a higher average MSE for
σ2. This result can be explained by the fact that Algorithm 2 often spuriously attributes variations in volatility to
the shock, ηt, because it fails to capture regime changes in the mean of the volatility process. On the other hand,
the values of average MSE for the model parameters under persistent regimes (i.e. Case 2) are similar between
the two approaches.12 The comparison of the percent changes between Case 1 and Case 2 clearly indicates that
the estimation accuracy is far better improved in Case 1 than in Case 2 when we use our proposed algorithm.

One important implication from the findings is that the existing algorithm performs very differently de-
pending on time series characteristics of regimes. Notably the new algorithm constantly performs well. In many
different empirical analyses, we may observe various transition probabilities for regimes. The proposed algo-
rithm will be useful in practice regardless of underlying persistence of regimes.
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4 Application

4.1 Empirical specification

For an empirical illustration, we apply the proposed algorithm to investigate whether the dynamics of US stock
market excess returns can be well characterized by a model with abrupt regime changes.13 For our analysis, we
employ the value-weighted portfolio returns of NYSE, AMEX, and NASDAQ firms minus the 1-month Treasury
bill rate.14 The data are observed at the weekly level from the week of January 4, 1980 to the week of May 26,
2017, a total of 1952 observations.

We consider the following model of excess stock returns:

𝑟𝑒
𝑡 = 𝜇𝑟

𝑡 + 𝜎𝑡𝜖𝑡, 𝜖𝑡 ∼ 𝑁𝐼𝐷(0, 1), (7)

where the excess stock returns, 𝑟𝑒
𝑡 , are made up of the expected value of excess returns, 𝜇𝑟

𝑡 , and an unexpected
random shock, 𝜎𝑡𝜖𝑡. An economic agent forms her expectations of 𝑟𝑒

𝑡 at time t − 1 using the information available
up to time t − 1. However, 𝜇𝑟

𝑡 is assumed to be a latent variable and is estimated within the model because the
information set available to a researcher is substantially smaller than the amount of information available to the
economic agent. The unobserved (log) mean, mt, and the (log) volatility, xt, of excess returns are determined by
the following latent vector autoregressive (VAR) process:

𝑚𝑡 = 𝜇𝑚
𝑠𝑚

𝑡
+ 𝜙11(𝑚𝑡−1 − 𝜇𝑚

𝑠𝑚
𝑡−1

) + 𝜙12(𝑥𝑡−1 − 𝜇𝑥
𝑠𝑥

𝑡−1
) + 𝑒𝑚

𝑡 , (8)

𝑥𝑡 = 𝜇𝑥
𝑠𝑥

𝑡
+ 𝜙21(𝑚𝑡−1 − 𝜇𝑚

𝑠𝑚
𝑡−1

) + 𝜙22(𝑥𝑡−1 − 𝜇𝑥
𝑠𝑥

𝑡−1
) + 𝜙23,𝑠𝑥

𝑡
𝜖𝑡−1 + 𝑒𝑥

𝑡 , (9)

[ 𝑒𝑚
𝑡
𝑒𝑥
𝑡

] ∼ 𝑁𝐼𝐷( � [ 0
0 ] , [ 𝜎2

𝑚 𝜌𝜎𝑚𝜎𝑥
𝜌𝜎𝑚𝜎𝑥 𝜎2

𝑥
] ) �, (10)

where 𝜇𝑚
𝑠𝑚

𝑡
= 𝜇𝑚

0 + 𝜇𝑚
𝑑 𝑠𝑚

𝑡 ; 𝜇𝑥
𝑠𝑥

𝑡
= 𝜇𝑥

0 + 𝜇𝑥
𝑑 𝑠𝑥

𝑡 ; 𝑠𝑚
𝑡 ∈ {0, 1}; and 𝑠𝑥

𝑡 ∈ {0, 1}.15 Under the VAR representation, the
conditional mean and volatility are specified as 𝜇𝑟

𝑡 = exp(𝑚𝑡) and 𝜎2
𝑡 = exp(𝑥𝑡). We are extending the latent

VAR model in Brandt and Kang (2004) by incorporating abrupt but recurring regime changes in μm and μx with
the regime indicator variables 𝑠𝑚

𝑡 and 𝑠𝑥
𝑡 .16 The regime-dependent parameter, 𝜙23,𝑠𝑥

𝑡
, plays an important role in

capturing the leverage effect. For example, the financial leverage of a firm increases when negative news lowers
the market value of the firm. An increase in the finantial leverage leads to a higher risk of holding the equity
claims, which results in a rise in the volatility.17 By allowing for the regime switching in 𝜙23,𝑠𝑥

𝑡
, we can test for

whether the magnitude of the leverage effect depends on the high and low volatility regimes.
The discrete state variables follow first-order Markovian processes of

𝜋𝑚
00 = 𝑝[𝑠𝑚

𝑡 = 0 ∣ 𝑠𝑚
𝑡−1 = 0], 𝜋𝑚

11 = 𝑝[𝑠𝑚
𝑡 = 1 ∣ 𝑠𝑚

𝑡−1 = 1], (11)

𝜋𝑥
00 = 𝑝[𝑠𝑥

𝑡 = 0 ∣ 𝑠𝑥
𝑡−1 = 0], 𝜋𝑥

11 = 𝑝[𝑠𝑥
𝑡 = 1 ∣ 𝑠𝑥

𝑡−1 = 1] (12)

For the purpose of identifying regimes, we assume that 𝜇𝑚
𝑑 > 0 and 𝜇𝑥

𝑑 > 0. Accordingly, 𝑠𝑚
𝑡 = 0 (𝑠𝑥

𝑡 = 0)
represents a state of low conditional mean (low volatility), whereas 𝑠𝑚

𝑡 = 1 (𝑠𝑥
𝑡 = 1) represents a state of high

conditional mean (high volatility). Algorithm 1 and Algorithm 3 allow us to estimate the above nonlinear state-
space model with regime-switching. The priors that we employed are reported in Table 2.18 In estimation, we
use 100,000 particles to ensure that our method fully explores the spaces of parameters and the latent states.

Table 2: Parameter comparisons by model specification.

Model A Model B Model C Model D

Regime Δ in Vol. No No Yes Yes Yes Yes Yes Yes
Regime Δ in Mean No No No No No No Yes Yes
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Regime Δ in Leverage No No No No Yes Yes No No
Prior Mean S.D. Mean S.D. Mean S.D. Mean S.D.

𝜇𝑚
0 𝒩 (𝑙𝑛𝑀̂ − 1, 22) −2.314 0.376 −2.040 0.306 −2.022 0.325 −4.036 0.385

𝜇𝑚
𝑑 𝒯 𝒩 (2, 22) − − − − − − 2.235 0.298

𝜇𝑥
0 𝒩 (𝑙𝑛𝑉̂ − 1, 22) 1.269 0.082 0.852 0.069 0.804 0.076 0.776 0.078

𝜇𝑥
𝑑 𝒯 𝒩 (2, 22) − − 0.995 0.121 1.114 0.114 1.191 0.101

𝜙𝑚
11 𝒩 (0.9, 0.52) 0.528 0.131 0.502 0.113 0.827 0.042 0.859 0.034

𝜙𝑚
12 𝒩 (0, 12) −0.218 0.090 −0.064 0.120 0.035 0.090 0.067 0.120

𝜙𝑥
21 𝒩 (0, 12) −0.205 0.073 0.003 0.100 −0.063 0.086 −0.023 0.089

𝜙𝑥
22 𝒩 (0.9, 0.52) 0.830 0.052 0.838 0.046 0.876 0.026 0.814 0.044

𝜙𝑥
23,0 𝒩 (0, 0.12) −0.198 0.020 −0.245 0.024 −0.187 0.031 −0.255 0.024

𝜙𝑥
23,1 𝒩 (0, 0.12) − − − − −0.223 0.031 − −

ρ 𝒯 𝒩 (0, 12) −0.026 0.217 −0.195 0.258 −0.026 0.255 −0.085 0.298
𝜎2

𝑚 ℐ 𝒢 (5, 0.05) 0.042 0.010 0.043 0.011 0.015 0.003 0.016 0.004
𝜎2

𝑥 ℐ 𝒢 (5, 0.05) 0.068 0.013 0.054 0.013 0.015 0.005 0.013 0.004

𝜋𝑚
00 ℬ𝑒(98, 2) − − − − − − 0.979 0.006

𝜋𝑚
11 ℬ𝑒(98, 2) − − − − − − 0.980 0.006

𝜋𝑥
00 ℬ𝑒(98, 2) − − 0.986 0.004 0.987 0.005 0.988 0.004

𝜋𝑥
11 ℬ𝑒(98, 2) − − 0.982 0.005 0.983 0.005 0.978 0.006

log(ML) −4105.9 −4101.3 −4105.5 −4107.2

Refer to Eqs. (8), (9), (10), (11), and (12). Model A assumes no regime change. Model B assumes a regime change in μs only. Model C
assumes regime changes in μs and 𝜙𝑥

3 . Model D assumes regime changes in μs and μm. The value of log(ML) refers to the log of marginal
likelihood. The sample period ranges between the week of January 4, 1980 and the week of May 26, 2017. A total of 100,000 particles are
used to obtain the estimates. The values of 𝑙𝑛𝑀̂ and 𝑙𝑛𝑉̂ represent the logs of the sample mean and variance of yt. The truncated normal
distributions for 𝜇𝑚

𝑑 and 𝜇𝑥
𝑑 are defined between 0 and infinity. The truncated normal distribution ρ is defined between −1 and 1.

4.2 Empirical results

Our empirical analysis accounts for various possibilities of innovations under which the conditional mean and
volatility may perform. In particular, the generalized environment can be categorized into three broad cases: a
regime change in volatility, a regime change in the conditional mean, and a regime change in the leverage effect.
Model A assumes no regime change at all. All other cases assume regime-switching either in the conditional
mean and volatility of the market excess return. For instance, Model B assumes a regime change in μs only;
Model D assumes regime changes in both μs and μm; and Model C assumes regime changes in μs and ϕ23 to
incorporate a possibility of a regime change in the leverage effect. To determine which model best fits with the
data in a parsimonious model setup, we compute the log marginal likelihoods (log(ML)) at the terminal time
period of each case.19

Comparing the log(ML) values of the four models determines if regime switching occurs and where it occurs
in the excess return process. Table 2 presents the log(ML) values. The log(ML) value of −4105.9 in Model A (i.e.
no regime-switching) is smaller than Model B (i.e. regime-switching in volatility), which is evidence that the
regime change exists in the conditional volatility process. Comparing Model B (i.e. a change in volatility only)
and Model D (i.e. changes in the conditional mean and the volatility) determines whether a regime change ex-
ists in the conditional mean process. The log(ML) value of −4101.3 in Model B is higher than the log(ML) value
of −4107.2 in Model D. Again, this finding suggests that the regime change occurs only in the volatility pro-
cess. Given the evidence in favor of regime-switching in volatility, we can examine whether a regime-switching
occurs in both the volatility process and the leverage effect. Comparing Model B (i.e. the leverage effect is con-
stant) versus Model C (i.e. the leverage effect changes according to the volatility regimes) allows us to determine
whether the leverage effect changes over time. The log(ML) of −4101.3 in Model B is greater than the log (ML)
of −4105.5 in Model C, which implies that the regime switching in the leverage effect is not a main feature of
the excess market return.20

This evidence does not discount the importance of the leverage effect in the model. Rather, the leverage effect
itself is an integral element of the stock return analysis, as 𝜙𝑥

23,0 is significant across all model specifications. Note

7

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Kim and Lee DE GRUYTER

that according to the model comparison criterion suggested by Kass and Raftery (1995) and Raftery (1995),
Model B is strongly or very strongly preferred to other models.21

We depict the movements of the weekly excess return, the filtered stochastic volatility, 𝐸[𝜎2
𝑡 ∣ 𝑦1∶𝑡], and the

filtered probability of the high-volatility regime, Pr(𝑠𝑡 = 1 ∣ 𝑦1∶𝑡), from the week of January 4, 1980 to the week
of May 26, 2017 in Figure 1 using the specification from Model B, the best model. The weekly return (i.e. top
graph) oscillates quite violently throughout the sample period. The degree of fluctuation is particularly large for
periods between the years of ’87-89’, ’99-01’, and ’09-11’ (i.e. periods of the second oil shock, the dot-com boom,
and the global financial crisis, respectively). When matching the weekly market return with the volatility graph
(i.e. the mid graph), it is evident that the cycles with high fluctuations are closely associated with the periods
that exhibit high volatility. The volatility is at its peak during the recent financial crisis. When we compare the
volatility graph with the filtered regime state graph (i.e. the bottom graph), it is evident that the level of volatility
and the probability of the high-volatility regime exhibit strong co-movements. Note that the volatility regime
is not well identified in the early sample periods due to the insufficient number of observations. However,
since the mid-1990s, when observations are accumulated, the volatility regime is more accurately estimated by
incorporating more observations that contain regime switching signals. Our estimated regimes fairly match up
to those of Ang and Timmermann (2012) over the same sample periods.

Figure 1: Time series of stock returns, volatility, and regime probability.
Notes: The sample period ranges from the week of 1980/01/04 and 2017/05/26. Stochastic volatility refers to the ex-
tracted 𝑒𝑥𝑝(𝑥𝑡). High volatility regime depicts the probability of the estimated switches in regimes.

Continuing from the working example of Model B, we compare the 1 year average excess return and the
estimated 𝜇𝑟

𝑡 in Figure 2. The red dotted line is the average excess return, whereas the blue solid line is the
extracted 𝜇𝑟

𝑡 from the data. For a better comparison of the movements in the average excess return and the
estimated 𝜇𝑟

𝑡 , we report the result for the latter sample period from the week of August 12, 2011 to the week of
May 26, 2017. Given that the sample period starts from 1980, we conjecture that there is sufficient information to
accurately estimate 𝜇𝑟

𝑡 by August of 2011. Using a slightly earlier or slightly later date than August 2011 does not
substantially change our finding. Figure 2 shows that there is a similarity in the long-term movements between
the two series. Even though the magnitude of fluctuation may be different, the overall vertical movements of
these two series co-align with each other.22 The overall comparison result indicates that the estimated 𝜇𝑟

𝑡 can
accurately capture the behaviors of the average excess return.
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Figure 2: Comparison of yearly average excess return and filtered 𝜇𝑟
𝑡 .

Notes: The solid blue line is for the estimated 𝜇𝑟
𝑡 , while the red dashed line is the for the yearly average excess return. The

graph depicts the periods between 2011/08/12 and 2017/05/26.

In addition, we report the posterior means and standard deviations of model parameters at the terminal
time period in Table 2. While the parameters that represent persistence, ϕ11 and ϕ22, are significant, other pa-
rameters that govern inter-temporal relationships between the conditional mean and volatility, ϕ12 and ϕ21,
are not significant. Even if the trade-off between risk and return is not our direct concern, the empirical result
may be the consequence of the intrinsically inconclusive evidence on the risk-return relation in the return data,
which has been actively discussed in the previous literature. For instance, Ghysels, Santa-Clara, and Valkanov
(2005), Lundblad (2007), and Ludvigson and Ng (2007) show a positive risk-return trade-off, whereas Nelson
(1991), Glosten, Jagannathan, and Runkle (1993), and Brandt and Kang (2004) present a negative risk-return
trade-off.

5 Conclusion

In this paper, we propose a novel online estimation method for regime-switching state-space models. Particu-
larly, we improve the estimation performance of the existing method developed by Carvalho and Lopes (2007)
by utilizing all of the available and most recent information when re-sampling existing particles and generat-
ing new particles. Empirically, we apply the proposed method to understand the dynamics of the conditional
mean and volatility of US excess stock market returns under a regime switching framework. Our empirical
study indicates that the model that incorporates regime-switching (particularly in the volatility process) is the
most viable candidate for correctly capturing the stock return movement.

Our new approach opens doors for future research. A combination of a full parameter learning approach
(e.g. sufficient statistics) in Carvalho et al. (2010) with our proposed approach of handling the regime index
variable may offer a more reliable estimation method for various regime switching models. Additionally, it
would be interesting to merge more refined SMC smoothing methods of Bernardo et al. (2011), Rios and Lopes
(2013), and Yang, Stroud, and Huerta (2017) with our proposed algorithm.
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Appendix A

Volatility MSE and QPS comparison

Figure 3: Top: box plots of the MSE of the estimated volatility process compared to the real simulated volatility process
for each filter. Bottom: box plots of the QPS for each filter. (A) Case 1: 𝜋00 = 0.9, 𝜋11 = 0.85. (B) Case 2: 𝜋00 = 0.99, 𝜋11 =
0.9. (C) Case 1: 𝜋00 = 0.9, 𝜋11 = 0.85. (D) Case 2: 𝜋00 = 0.99, 𝜋11 = 0.9.
Notes: All plots present the results for the MSSV k = 2 model with the parameter set of {𝛼0 = 1, 𝛼1 = 3, 𝜙 = 0.5, 𝜎2 =
0.5}. Case 1 uses the transition probability of {𝜋00 = 0.9, 𝜋11 = 0.85} and Case 2 uses {𝜋00 = 0.99, 𝜋11 = 0.9}. The total
simulation runs are 100. Each simulation uses 5000 particles in 1000 time periods.
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Appendix B

Comparison of parameter MSE: case 1

Figure 4: Box plots of the MSE of each parameter for each filter.
Notes: All plots present the results for the MSSV k = 2 model with the parameter set of {𝛼0 = 1, 𝛼𝑑 = 3, 𝜙 = 0.5, 𝜎2 = 0.5}.
The total simulation runs are 100. Each simulation uses 5000 particles in 1000 time periods.
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Appendix C

Comparison of parameter MSE: case 2

Figure 5: Box plots of the MSE of each parameter for each filter.
Notes: All plots present the results for the MSSV k = 2 model with the parameter set of {𝛼0 = 1, 𝛼𝑑 = 3, 𝜙 = 0.5, 𝜎2 = 0.5}.
The total simulation runs are 100. Each simulation uses 5000 particles in 1000 time periods.

Appendix D

Table 2 Robust Check

Table 3: Parameter comparisons by model specification, robust check.

Model A Model B Model C Model D

Regime Δ in Vol. No No Yes Yes Yes Yes Yes Yes
Regime Δ in Mean No No No No No No Yes Yes

Regime Δ in Leverage No No No No Yes Yes No No
Prior Mean S.D. Mean S.D. Mean S.D. Mean S.D.

𝜇𝑚
0 𝒩 (𝑙𝑛𝑀̂ − 1, 22) −2.314 0.376 −1.990 0.282 −2.204 0.372 −3.891 0.357

𝜇𝑚
𝑑 𝒯 𝒩 (2, 22) − − − − − − 2.053 0.360

𝜇𝑥
0 𝒩 (𝑙𝑛𝑉̂ − 1, 22) 1.269 0.082 0.812 0.068 0.917 0.083 0.828 0.085

𝜇𝑥
𝑑 𝒯 𝒩 (2, 22) − − 1.026 0.118 1.017 0.124 1.155 0.121
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𝜙𝑚
11 𝒩 (0.9, 0.52) 0.528 0.131 0.324 0.152 0.861 0.032 0.861 0.030

𝜙𝑚
12 𝒩 (0, 12) −0.218 0.090 −0.046 0.120 0.002 0.077 0.011 0.104

𝜙𝑥
21 𝒩 (0, 12) −0.205 0.073 0.032 0.114 −0.063 0.067 −0.020 0.087

𝜙𝑥
22 𝒩 (0.9, 0.52) 0.830 0.052 0.843 0.040 0.881 0.024 0.824 0.049

𝜙𝑥
23,0 𝒩 (0, 0.12) −0.198 0.020 −0.231 0.023 −0.182 0.030 −0.262 0.033

𝜙𝑥
23,1 𝒩 (0, 0.12) − − − − −0.256 0.042 − −

ρ 𝒯 𝒩 (0, 12) −0.026 0.217 −0.104 0.236 0.020 0.259 −0.050 0.252
𝜎2

𝑚 ℐ 𝒢 (5, 0.05) 0.042 0.010 0.044 0.012 0.013 0.004 0.016 0.005
𝜎2

𝑥 ℐ 𝒢 (5, 0.05) 0.068 0.013 0.065 0.017 0.013 0.003 0.012 0.003

𝜋𝑚
00 ℬ𝑒(99, 1) − − − − − − 0.975 0.006

𝜋𝑚
11 ℬ𝑒(99, 1) − − − − − − 0.975 0.007

𝜋𝑥
00 ℬ𝑒(99, 1) − − 0.992 0.002 0.992 0.002 0.991 0.003

𝜋𝑥
11 ℬ𝑒(99, 1) − − 0.989 0.004 0.984 0.005 0.987 0.004

log(ML) −4105.9 −4099.6 −4105.2 −4105.0

Refer to footnotes in Table 2.

Notes
1 Gordon, Salmond, and Smith (1993) introduce the bootstrap filter to draw samples from unobserved states based on a sampling im-
portance re-sampling strategy. Building off the bootstrap filter, Pitt and Shephard (1999) construct the APF, which adopts a sequential
importance sampling with re-sampling particle filters.
2 Lopes and Tsay (2011) provide an excellent review of the recent development in the SMC literature, including Carvalho and Lopes (2007)
who provide an application to the Markov switching stochastic volatility (MSSV) models. Rios and Lopes (2013) revisit and extend the work
of Carvalho and Lopes (2007) and implement the filters to estimate MSSV models. See also Carvalho et al. (2010) and Bernardo et al. (2011)
for recent developments in particle learning methods.
3 To illustrate our point, consider two cases with two different regimes, regime 1 and regime 2. For Case 1, π11 = 0.51 and π12 = 0.49. For
Case 2, π11 = 0.99 and π12 = 0.01. The parameter π11 (π12) represents the transition probability of a hidden state moving from regime 1 to
regime 1 (from regime 1 to regime 2). While the transition probabilities for π11 are both higher than 0.5, there is a substantial difference in
the magnitude between π11 in Case 1 versus π11 in Case 2. The existing algorithm could not distinguish the difference in calibrating the
regime index variable, whereas our algorithm considers the different degrees of transition probabilities.
4 Our proposed algorithms in this section can be modified to incorporate time-varying transition probabilities. For instance, consider a
two-state environment with transition probabilities π11,t and π22,t and assume that they follow a functional form of a logit specification.
Then 0 < 𝜋11,𝑡 = 𝑒𝑥𝑝(𝑍𝑡𝛾1)/(1 + 𝑒𝑥𝑝(𝑍𝑡𝛾1)) < 1 and 0 < 𝜋22,𝑡 = 𝑒𝑥𝑝(𝑍𝑡𝛾2)/(1 + 𝑒𝑥𝑝(𝑍𝑡𝛾2)) < 1, where the values of the covariates Zt
vary over time.
5 We have added the regime-switching state-space model to the original work of Liu and West (2001).
6 The incremental target density of the proposed algorithm is given below:

𝑝(𝑥𝑡, 𝑠𝑡, 𝜃 ∣ 𝑦1∶𝑡) ∝ 𝑝(𝑦𝑡 ∣ 𝑥𝑡, 𝑠𝑡; 𝜃)𝑝(𝑥𝑡 ∣ 𝑥𝑡−1, 𝑠𝑡; 𝜃)𝑝(𝑠𝑡 ∣ 𝑠𝑡−1; 𝜃)𝑝(𝜃|𝑦1∶𝑡−1),

where 𝑦1∶𝑡 = [𝑦1, 𝑦2, … , 𝑦𝑡]′.
7 The expectation of regime duration is computed by 1

1−𝜋𝑘𝑘
for k = {0, 1}. See Kim and Nelson (1999) for the derivation of regime duration.

For the simulation purpose, when the computed regime duration is not an integer, we round it up to the nearest integer.
8 MSE is a widely used and standard measurement for the validity of online filtering methods. Many others, including Carvalho and
Lopes (2007), Carvalho et al. (2010), and Rios and Lopes (2013) utilize MSE of volatility and model parameters to compare the validity of
different methods.
9 The parameter set is 𝜃 = {𝛼0, 𝛼𝑑, 𝜙0, 𝜎2, 𝜋00, 𝜋11}.
10 The priors for α0, αd, and ϕ are normal distributions. The variance parameter takes an inverse gamma distribution as a prior. For the
transition probabilities, we assume beta distributions.
11 The average MSE and QPS for each algorithm can also be compared with a box plot representation. Appendix A presents the distribution
of observed MSEV and QPS values obtained from 100 simulations.
12 We show box plots for the distribution of MSE for each parameter in Appendix B.
13 So, Lam, and Li (1998), for instance, highlight the appropriateness of a time-varying stochastic volatility model with regime-switching
using the Standard and Poor’s 500 weekly return data.
14 The data is retrieved from the CRSP database.
15 We also consider a case in which 𝜙13𝜖𝑡 is included in equation (8). However, the posterior distribution of ϕ13 is narrowly disperse around
zero and the more general model is not preferred by our Bayesian model selection criterion. For the sake of brevity, we do not report the
corresponding result.
16 We have considered another comparable model in which all VAR coefficients, {𝜙11, 𝜙12, 𝜙21, 𝜙22} change according to regimes. We do
not report the results here because the marginal likelihood of the model is too low compared to others.
17 Christie (1982) provides a comprehensive analysis of the importance of the leverage effect.
18 We impose weakly informative priors for other parameters while using informative priors for regime transition probabilities following
the literature.
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19 The marginal likelihood estimator of the auxiliary particle filter is defined by:

𝑝̂(𝑦1∶𝑡) = 𝑝̂(𝑦1)
𝑇

∏
𝑡=2

𝑝̂(𝑦𝑡 ∣ 𝑦1∶𝑡−1),

where 𝑝̂(𝑦𝑡 ∣ 𝑦1∶𝑡−1) = ( 1
𝑁 ∑𝑁

𝑖=0 𝜔(𝑖)
𝑡 )(∑𝐾−1

𝑘=0 ∑𝑁
𝑖=1 𝜔(𝑖)

𝑡−1|𝑡,𝑘).
20 Our main finding in Table 2 is based on the prior distribution ℬ𝑒(98, 2) for the transition probabilities. The expected regime duration
within the middle 90% of the assumed prior beta distribution ranges from 21.3 to 277.7 periods. To explore a wider range of the regime
duration in the prior distribution, we carry out a robust check that utilizes ℬ𝑒(99, 1). The middle 90% range expands to 33.3 and 1923.1
periods, which includes cases with much more persistent regime changes. Appendix D presents the results from the sensitivity analysis.
All of our findings are robust to the alternative priors.
21 The difference between the log(ML) value for the two compared models is multiplied by two to compute the model comparison criterion.
When the value is between 6 and 10, the corresponding model is strongly preferred. When it is larger than 10, the model is very strongly
preferred.
22 We also experiment with the monthly excessive return instead of the yearly, and the result does not change.
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